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Some cities produce solar energy potential maps

• Solar potential maps guide solar investment decisions and
priorities
• Solar potential maps reflect total potential solar energy output

of an area



Producing solar maps is expensive

• Combination of urban planning information and 3D data from
LIDAR measurements
• Estimates based on roof size, angle, shading, and orientation
• Problem: Data are expensive to obtain and not widely available



Can deep learning help create maps more easily?

Input Image Roof Label

• Identify buildings
• Categorise roofs by suitability for solar
• Output estimates for downstream estimation of solar potential

of a building, area, or entire city



Good news: City of Berlin provides labeled data!

• Aerial images from 2013
• Solar potential maps based on 2013 LIDAR data
• Four categories of roofs: very suitable, quite suitable,

somewhat suitable, not suitable



Bad news: Labels are really not that good
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Berlin training data are very unbalanced

After data extraction,
• ca. 100 000 tiles of size (512, 512) covering all of Berlin
• 45% masks → completely empty
• 40% masks → less than 20% roof coverage
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Unbalanced pixel distribution per category



We trained two models on these data

Input Image True Mask Predicted Mask

• Our models can estimate the percentage roof area of the
highest suitability category in a part of a city
• All we need are aerial photographs of your city



Two models

• Pixel classifier: Unet
architecture with a
pre-trained backbone:
• Roof classifier.
• Multiclass pixel classifier.

• Object detector and
classifier: Mask R-CNN
from Detectron2.



Roof classifier

Input Image True Mask Predicted Mask

• On a cleaned dataset, the validation metrics are
Accuracy: 0.97, Precision: 0.82, Recall: 0.66, IoU: 0.57
• Used to identify incorrect masks in the large dataset



Multiclass pixel classifier.
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• The model predicts 4.46% of "very suitable roof" on a test set
of Berlin (true value 4.91%)



Mask R - CNN.

not suitable roof

somewhat suitable roof

quite suitable roof

very stuitable roof

0

0.02

0.04

true masks
predicted masks

Pixel predictions distribution per category

• The model predicts 4.94% of "very suitable roof" on a test set
of Berlin (true value 4.91%)



The models perform poorly at identifying and categorising
individual buildings
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The metrics are . . . interesting.



What predictions look like - Multiclass pixel classifier
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What predictions look like - Mask R-CNN
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What predictions look like - Mask R-CNN
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What other limitations are there?
• The model has learned from mislabeled data (partial cleaning)
• The model has learned only from aerial photographs of one

resolution
• The model knows only what roofs in Berlin look like

What’s happening in Leibnitz?

Input Image Predicted Mask



What’s Next

• Data cleaning, data cleaning, data cleaning
• Dealing with class imbalance
• Better model: Work with a transformer; work with a model

pre-trained on aerial photographs

Meanwhile in Jakarta

Input Image Predicted Mask


